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A COROLLARY OF THE ASSOCIATION-INDUCTION HYPOTHESIS 
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Failure o f  previous equations to account for the decline of  the cellular resting potentials 
at low external K+ concentration has led to a revision of the equation for the cellular 
resting potential based on the surface-adsorption theory, a corollary of the association- 
induction hypothesis. This revised equation, which takes into account cooperative inter- 
action among the surface anionic sites adsorbing K+ or Na+, is capable of explaining the 
entire profile of  the resting potential at high as well as low external K+ concentration 
(and at high external Na+ concentrations). 

In 1959 I presented briefly,l and later 
in detail, the surface adsorption theory of 
cellular resting p~tent ia l .~-~ In this theory the 
resting potential (JI) is an equilibrium po- 
tential; the nature, polarity, and density of 

-' fixed ionic sites on the cell surface along with 
the nature and concentrations of external ions 
are what determine the polarity and magni- 
tude of the potential. Thus the equation de- 
scribing the cellular resting potential be- 
comes : 

where Ki is the adsorption constants in 
( M ) - ~  of the ith ion (bearing opposite elec- 
tric charge to that of the surface fixed sites) 
at a concentration [pile= among a total of n 
types of ions of the same charge in the ex- 
ternal medium. 

- In normal frog muscle cells the surface 
.sites are anionic (i.e., isolated P- and 
y-carboxyl groups) (see ref. 3, p. 278). 
There is evidence that these isolated sites of 
carboxyl groups have little or no affinity for 

divalent cations but do adsorb monovalent 
K+ and Na+ as well as other monovalent 
 cation^.^ In that case, 

The relations described in Eq. 2 between each 
of the variables and JI have been experimen- 
tally verified under a variety of condi- 
t i o n ~ . ~ ~ " ~ *  Thus Eq. 2 (as well as the Hodg- 
kin-Katz equation based on the membrane 
theorylO) are capable of explaining most of 
the experimental data on the effect of vary- 
ing external K+ including: (1) the steady 
decrease of $I with increases of [K+],, in the 
range of [K+],, higher than that found in the 
cell's natural environment (e.g., 2.5 mM 
for frog muscle cells);"2) the stabilization 
of JI toward a constant value as [K+],, de- 
creases to values below that found in the 
cell's normal environment with either [Na+],, 
or ([Na+],, + [K+],,) held con~tant ;~  and 

* Edelmann, Edelmann, and Baldauf in 1974 de- 
rived a variant of Eq. 2, in which a term 1 is in- 
cluded in the sum within the bracket? 
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(3) the continual steady increase of t,b when 
[K+],, is held constant at zero or near zero 
while [Na+],, is steadily lowered.ll 

However, neither the ~ ~ o d ~ k i n - ~ a t z  equa- 
tion nor Eq. 2 explains the observation that 
in the presence of high external Na+ con- 
centration, + may in certain types of cells 
decrease with lowering of external K+ con- 
centration beyond that found in the cell's 
normal environment.12-l4 

Now, Eqs. 1 and 2 were derived on the 
basis of two assumptions: (1) The per- 
centage of vacant surface anionic sites is 
small compared to that of the occupied sites; 
evidence for this assumption based on the 
magnitude of the electrical potentials is given 
in the footnote below.** (2) The sites are 

independent and show no cooperative inter- 
action. 

I shall demonstrate that by retaining the 
first assumption but relaxing the second, and 
by introducing the concept of cooperative 

* 

interaction among the surface protein anionic 
sites-a concept that has been most useful 
in explaining bulk phase K+ and Na+ ac- 
cumulation in living cells-the decrease of 
JI with decreasing [K+], at high [Na+],, 
can also be explained. 

In 1965 I showed that the adsorption of 
K+ and Na+ in the bulk phase cytoplasm 
of whole cells with nearest-neighbor inter- 
action energy equal to - y/2 can be de- 
scribed by the following isotherm derived on 
the basis of the one-dimensional Ising 
model : la-lS 

** Let us consider that a t  the cell surface the 
vacant anionic sites and counterion K+ form a 
Helmholtz double layer; the voltage across this 
double layer is then V = 4rud/v, where d is the 
distance between the two layers and is about 50 A 
or 5 x lVD meter. 8,  assumed to be 1.1 1 x lo-'" 
Coulomb/volt-m is equal to that of free space. 
The question then becomes: what is the density 
of surface vacant sites to yield a voltage seen 
in living cells; i.e., 0.1 V? The answer is u = 
Vq/4nd = (0.1 X 1.11 X 10"0)/(4 X 3.14 X 
5 x 10-3 = 1.77 X lo4 Coulomb. Since each 
Faraday is equal to 96,500 Coulomb, u = (1.77 X 
104)/(9.65 X 1 0 3  = 1.83 X 10-' Faraday. 'This 
amount of charge is carried by 1.83 x 10-D moles 
of vacant sites per cma of cell surface. 

The average number of fixed anionic sites per 
cm2 to a depth of 50 A in frog muscle cells can be 
roughly estimated as 1.5 X 10-I X 5 X 10" = 
7.5 x 10" moles, assuming that this site density 
is the same in the bulk phase as in the cell surface. 
The number of vacant sites is thus only (1.83 X 
10-')/(7.5 X 1 0 7  or 2.5% of the total surface- 
fixed anionic sites. Even if the vacant sites are en- 
tirely confined to a "monomolecular layer" of sur- 
face anionic sites, the percentage of vacant sites 
will be increased only by a factor of 2 since the 
average charge-to-charge and hence layer-to-layer 
distance is about 20 A (see ref. 3, p. 48). All these 
calculations were based on a permitivity 8 of the 
vacuum. In truth, the system is aqueous, contain- 
ing fixed ionic sites and counter ions. Thus the 
value of 7 (dielectric constant) must be considerably 
higher. Consequently, the percentage of vacant sites 
must be still lower than the values estimated. 

where [K+Iad is the concentration of ad- 
sorbed K+, and [f] is the concentration of 
adsorption sites for the ith (and jth) species. 
4 is defined as follows: 

where [K+],, and [Na+],, are the concen- 
tration of free Na+ and K+ in the external 
solution and Kg gP,K is the intrinsic equi- 
librium constant for the Na+K solute ex- 
change. KgOa,= is related to the intrinsic 
free energy of exchange AFG P,,K by the 
relation : 

It is to be noted that AFi i  4K refers to 
the free energy change in Na++K+ ex-' 
change of adsorption, which involves no 
change in the total number of Na-K pairs 
of nearest neighbors within the system. 
This is the case when the exchange on the 
middle site occurs in a triad of sites: 



FIGURE 1. A plot of the resting potential against external K+ and Na- concentration ratio 
according to Eq. 13. Ordinate represents $' which is equal to $- constant; abscissa represents 
{[K+]e./[Na+]..)' which is ([K+].,/[Na+].. . For experiments carried out in the pres- 
ence of a consant concentration of Na+ (e.g., 100 mM, the abscissa is then [Kl,. s 

(K%'4~/0.1).  

KNaNa-KKNa. A total of one KNa neigh- Consider the equilibrium distribution of 
boring pair exists before the exchange and K+ on the cell surface (only). That surface 
afterward. contains a microscopically thin layer of 

On the other hand, in an exchange of fixed anionic sites which adsorbs K+ (and 
NaNaNa-NaKNa, two Na-K neighboring Na+). The electrochemical potential of K+ 
p'airs are created. The creation of each addi- in the adsorption phase (Phase I ) ,  pK1, is 
tional mole of new Na-K entails another then 
energy term equal to -(y/2). Thus, in this 

p K ~  = p K ~ ( ~ )  + ~ q , ~  + RTlnfKxKI, (7) 
case, the total free energy change is not 

where pKO(I)  is the standard chemical poten- merely AFG ;",, but 
tial of K+ in Phase I, qI is the electrical po- 

A F ~ ~ , ~ + ~ [ - ( ~ / ~ ) ] = A F ~ . ~  -y. (6) tential in Phase I and xIcl is the mole fraction 
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of the adsorbed K+ in Phase I. fK1 is the 
activity coefficient of the adsorbed K+. In 
the contiguous external solution phase 
(Phase 11), 

where fKI1 is the activity coefficient and 
[K+III the concentration of K+ ion in the 
external solution and is the electrical 
potential in Phase 11. At equilibrium, the 
electrochemical potentials of the two phases 
are equal: the electric potential difference 
between these phases (i.e., the resting po- 
tential JI) is then 

The mole fraction of the adsorbed K+ in 
Phase I is 

where [f-] is the concentration of fixed sur- 
face anionic sites. 

From Eqs. 3 and 10, we have 

Substituting Eq. 11 into Eq. 9, we obtain 

I = pKow - p ~ ~ ( ' "  f RTF-lh(fg1/2fK1I) 

+ RTF-lln(l/[K+I..) 1 + ( ( 2  - I}/(( 

t,b = constant f RTF-lln(l/[K+]ex) 1 1 + 
( { t  - 11/{(t - 1l2 

+ 4 2 exp ( Y / R T ) } ~ ) \ ,  (13) 

where 5 is that described by Eq. 4. For 

consistency with symbols earlier published, 
the following relation is also given here: 

8 = exp (y/RT). (14) 

Figure 1 is a set of theoretical plots of * 

$' (= - constant3) against {[K+],,/ 
[Na+ lex)' = ([K+lex/ [Na+lex) Kg", K 

according to Eq. 13 with different values for 
the nearest-neighbor interaction energy: 
-y/2 = 0 kCal/mole ( 8  = 1 ) ;  -y/2 
= 0.356 kCal/mole ( 8  = 0.3); -y/2 
= 0.682 kCal/mole (8  = 0.1 ) ; and - y / 2  
= 1.363 kCal/mole (8  = 0.01). 

It is clear that an increase in the nearest- 
neighbor interaction energy -y/2, tends to 
bring about a decrease of t,b' as [K+III de- 
creases beyond the concentration found in 
the cell's normal environment while [Na+],, 
is maintained at more or less constant and 
relatively high values as experimentally ob- 
served.12-l4 This decrease of $' follows from 
the autocooperative shift from K+ adsorp- 
tion to Na+ adsorption on the cell surface" 
anionic sites, a phenomenon of fundamental 
importance in generation of the action po- 
tential according to the association-induction 
hypothesis (see ref. 3, chapter 10). 
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